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Using the Nikiforov–Uvarov (NU) method, the bound state energy eigenvalues and
eigenfunctions of the PT -/non-PT -symmetric and non-Hermitian modified Woods–
Saxon (WS) model potential with the real and complex-valued energy levels are ob-
tained in terms of the Jacobi polynomials. According to the PT -symmetric quantum
mechanics, we exactly solved the time-independent Schrödinger equation with same
potential for the s-states and also for any l-state as well. It is shown that the results are
in good agreement with the ones obtained before.
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1. INTRODUCTION

A large variety of potentials with the real or complex form are encoun-
tered in various fields of physics. A consistent physical theory of quantum
mechanics in terms of Hermitian Hamiltonians is built on a complex Hamil-
tonian that is not Hermitian, but the energy levels are real and positive as a
consequence of PT -symmetry (space-time reflection symmetry). By defini-
tion, a Hamiltonian is said to be PT -symmetric when [PT ,H ] = 0, i.e.,
PT H (PT )−1 = (PT )−1HPT = H, where P and T are, respectively, the
operators of parity (or space) and time-reversal (complex conjugation) transfor-
mations, i.e.,P : x → −x,P : V (x) → V (−x),P : p → −p, T : i → −i, T : iI
→ −iI and PT : p → p, where x, p, and I, are, respectively, the position,
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momentum and identity operators acting on the Hilbert space H = L2(R) and
i = √−1. Note that this applies only for the system whose classical position x

and momentum p are real (Bender and Boettcher, 1998b; Bender et al., 1999a,b;
Delabaere and Trinh, 2000a; Khare and Mandal, 2000; Mostafazadeh, 2002a,b,c).
It is also known that PT -symmetry does not necessarily lead to completely
real spectrum, and there are several potentials where part or all of the energy
spectrum are complex. The Schrödinger equation (SE) for the real (Hermitian)
potentials are investigated to generate the real energy eigenvalues which are of
much interest (Khare and Mandal, 2000; Mostafazadeh, 2002a,b,c). Bender et al.
for the first time and latter others have investigated several complex potentials on
the PT -symmetric quantum mechanics. The main reason for the growing recent
interest in PT -symmetry (Khare and Mandal, 2000; Mostafazadeh, 2002a,b,c)
is that the eigenvalues (spectrum) of every Hamiltonian is real (PT -symmetry is
exact) or come in complex conjugate pairs of complex eigenvalues (PT -symmetry
is spontaneously broken) (Bender and Boettcher, 1998b; Bender et al., 1999a,b,
2001; Cannato et al., 1998; Delabaere and Trinh, 2000a,b; Eğrifes et al., 1999a,b;
Fernández et al., 1998; Japaridze, 2002; Khare and Mandal, 2000; Kretschmer
and Szymanowski, 2001a; Mezincescu, 2000; Mondal et al., 2001; Mostafazadeh,
2002a,b,c; Shin, 2001; Şimşek and Eğrifes, 2004; Znojil and Tater, 2001).
Afterwards, non-Hermitian Hamiltonians with real or complex spectra have been
studied by using numerical and analytical techniques (Ahmed, 2001a; Bagchi
and Quesne, 2000; Berkdemir et al., 2005, 2006a; Yeşiltaş et al., 2003).

Various different techniques have been employed in solving the above men-
tioned potential cases. One of these methods which makes it possible to present
the theory of special functions by starting from a differential equation has been
developed by Nikiforov and Uvarov (NU) method (Nikiforov and Uvarov, 1988).
This method is based on solving the time-independent SE by reducing it into a
generalized equation of hypergeometric form. Exact solution of SE for central po-
tentials has generated much interest in recent years. So far, these potentials are the
parabolic type potential (Barton, 1986), the Eckart potential (Flügge, 1971; Landau
and Lifshitz, 1958), the Fermi-step potential (Flügge, 1971; Landau and Lifshitz,
1958), the Rosen-Morse potential (Morse and Feshbach, 1953), the Ginocchio
barrier (Sahu et al., 2002), the Scarf barriers (Khare and Sukhatme, 1988), the
Morse potential (Ahmed, 1991) and a potential which interpolates between Morse
and Eckart barriers (Ahmed, 1993). Many authors have studied on exponential
type potentials (Barclay et al., 2002; Jia et al., 2002; Lévai and Znojil, 2002;
Yeşiltaş et al., 2003; Znojil, 1999) and quasi exactly solvable quadratic potentials
(Ahmed, 2001b; Bender and Boettcher, 1998a; Znojil, 2000). In addition, Dirac,
Klein–Gordon, and Duffin–Kemmer–Petiau equations for a Coulomb type (gen-
eralized Hulthén) potential are solved by using this method (Eğrifes and Sever,
2005; Şimşek and Eğrifes, 2004; Yasuk et al., 2005). The exact solutions for these
models have been obtained analytically.
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So far, we have solved the nonrelativistic and semi-relativistic wave equations
using the statistical model (Bekmezci et al., 1993; Ikhdair et al., 1994a,b), a
different approach to the shifted large 1/N expansion technique (Ikhdair and Sever,
1992a,b,c, 1993a, 2003, 2004, 2005a,c,e, 2006a,c; Ikhdair et al., 1992, 1993a,b)
and also the shifted large 1/l expansion technique (Ikhdair, 2005) with a wide group
of static phenomenological and QCD-motivated potentials to produce the heavy
and light quarkonium spectra. In addition, the energy eigenvalues of the bound
states of an electron in the general exponential cosine screened Coulomb potential
are obtained using the shifted large 1/N expansion method (Ikhdair and Sever,
1993b) and in a novel perturbation method (Ikhdair and Sever, 2005b, 2006b,d).
In this work, we solve the SE using NU method (Berkdemir et al., 2005, 2006a;
Eğrifes et al., 1999a,b; Ikhdair and Sever, 2005d; Nikiforov and Uvarov, 1988)
with some well-known WS potential (Hagino et al., 2001). This potential form
has been used widely in analysis of heavy-ion reaction and has enjoyed success
(Hagino et al., 2001). It is selected for a shell model which can be used for
describing metallic clusters in a successful way and for lighting the central part
of the interaction neutron with one heavy nucleus (Bulgac and Lewenkopf, 1993;
Hamamato et al., 2001).

In the present work, the energy eigenvalues and eigenfunctions of the
Hermitian and non-Hermitian form of the modified WS potential (generalized
WS-plus-the square of generalized WS potential) are calculated by employing
the NU method. The aim in this paper is to show that the centrifugal part of SE
can be reduced into the generalized WS square potentials.

The contents of this paper are as follows: In Section 2 we breifly present the
modified form of WS model potential inspired from the SUSYQM. In Section 3,
we present Nikiforov–Uvarov method and also the solution of the Schrödinger
equation with Hermitian form of the modified WS model potential for the l = 0
and l �= 0 cases. In Section 4, the PT −symmetric and non-PT -symmetric non-
Hermitian potential forms are also investigated. Results are given in Section 5.
Finally, we give the summary in Section 6.

2. MODIFIED WOODS–SAXON POTENTIAL

The motion of the free electrons which have conclusive influence on the
abundance of metallic clusters is a vital problem in the nuclear physics. These
electrons are moving in well defined orbitals, around the central nucleus and in a
mean field potential which is produced by the positively charged ions and the rest
of electrons. In the mean field potential, the details of the potential are described
by free parameters such as depth, width and slope of the potential, which have
to be fitted to experimental observations. The interactions between nuclei are
commonly described by using a potential that consist of the Coulomb and the
nuclear potentials. These potentials are usually taken to be of the form of usual
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WS model potential (Brack, 1993) which has been widely used in the analysis of
heavy-ion reactions (Hagino et al., 2001). Recently, Arai (1991) has introduced
the deformed hyperbolic potentials using the definitions of the deformed hyper
functions. As an example, the inter-nuclear potential, spherically symmetric, is
assumed to have the superposition of an attractive generalized WS potential-plus-
the repulsive square of a WS potential, i.e., modified WS potential (Berkdemir
et al., 2006b) in the form:

Vq(r; R) = −V1
e−( r−R

a )

1 + qe−( r−R
a )

+ V2

(
e−( r−R

a )

1 + qe−( r−R
a )

)2

, q ≥ 1, R � a (1)

where r stands for the center-of-mass distance between the projectile and the
target nuclei. The parameters of the nuclear potential are given as follows: R =
r0A

1/3 is to define the confinement barrier position value of the corresponding
spherical nucleus or the width of the potential, A is the target mass number, r0

is the radius parameter, V1 controls the barrier height of the Coulombic part, a is
the surface diffuseness parameter has to control its slope, is usually adjusted to
the experimental values of ionization energies (Hagino et al., 2001) and V2 is an
introduced parameter for the second part of Eq. (1) (it transforms like potential
barrier) (Berkdemir et al., 2006b). Further, q is a deformation parameter, the
strength of the exponential part other than unity, set to determine the shape of
potential and is arbitrarily taken to be a real constant within the potential. Hence,
its worthwhile to note, the proposed potential form in (1) is therefore consisting
of the generalized WS-plus-the square of the generalized WS potential. Further,
we remark that the spatial coordinates in the potential are not deformed and thus
the potential still remains spherical. We have to note also that, for some specific
q values this potential reduces to the well-known types, such as for q = 0 to
the exponential potential and for q = −1 and a = δ−1 to the modified Hulthén
potential (Ikhdair and Sever, 2005d).

To study any quantum physical system characterized by the empirical poten-
tial given in Eq. (1), we solve the original SE:

(
p2

2m
+ V (r)

)
χ (r) = Eχ (r), (2)

where the classical phase space is assumed to be real, i.e., r and p are the standard
Hermitian operators representing the position and momentum of a particle of mass
m. Employing the separation of variables

χ (r) = 1

r
ψ(r)Y (θ, φ), (3)
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leads to the simple radial SE, for all angular momentum states, of the type

− h2

2m

d2ψ(r)

dr2
+

(
V (r) + l(l + 1)h2

2mr2

)
ψ(r) = Enψ(r). (4)

For this, our aim is to solve the last equation for the given modified WS model
potential given in (1) for the cases l = 0 and l �= 0 using the NU method which will
be introduced breifly in Section 3 and employed latter on in the coming sections.

3. THE NIKIFOROV–UVAROV METHOD

The Nikiforov–Uvarov (NU) method provides us an exact solution of Eq. (4)
for certain kind of potentials among them the one given in Eq. (1) (Nikiforov and
Uvarov, 1988). This method is based upon the solutions of general second order
linear differential equation with special orthogonal functions (Arai, 1991). For a
given real or complex potentials, the PT -symmetric one-dimensional (1D) SE
is reduced to a generalized equation of hypergeometric type with an appropriate
s = s(x) coordinate transformation. Thus, it takes the form:

ψ ′′
n (s) + τ̃ (s)

σ (s)
ψ ′

n(s) + σ̃ (s)

σ 2(s)
ψn(s) = 0, (5)

where σ (s) and σ̃ (s) are polynomials, at most of second-degree, and τ̃ (s) is of a
first-degree polynomial. To find a particular solution for Eq. (5) by separation of
variables, we use the transformation given by

ψn(s) = φn(s)yn(s). (6)

This reduces SE, Eq. (5), into an equation of hypergeometric type:

σ (s)y ′′
n (s) + τ (s)y ′

n(s) + λyn(s) = 0, (7)

where φ(s) is found to satisfy the condition φ′(s)/φ(s) = π (s)/σ (s). Further,
yn(s) is the hypergeometric type function whose polynomial solutions are given
by Rodrigues relation

yn(s) = Bn

ρ(s)

dn

dsn
[σn(s)ρ(s)], (8)

where Bn is a normalization constant and the weight function ρ(s) must satisfy
the condition (Nikiforov and Uvarov, 1988)

w′(s)

w(s)
= τ (s)

σ (s)
, (9)
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where w(s) = σ (s)ρ(s). The function π (s) and the eigenvalue parameter λ re-
quired for this method are defined as

π (s) = σ ′(s) − τ̃ (s)

2
±

√(
σ ′(s) − τ̃ (s)

2

)2

− σ̃ (s) + kσ (s), (10)

and

λ = k + π ′(s). (11)

Here, π (s) is a polynomial with the parameter s and the determination of k

is the essential point in the calculation of π (s). Thus, for the determination of
k, the discriminant under the square root is being set equal to zero and the
resulting second-order polynomial has to be solved for its roots k+,−. Hence, a
new eigenvalue equation for the SE becomes

λn + nτ ′(s) + n (n − 1)

2
σ ′′(s) = 0, (n = 0, 1, 2, . . .) (12)

where

τ (s) = τ̃ (s) + 2π (s), (13)

and it must have a negative derivative. Let us now start solving SE for the
PT modified WS using the NU technique for l = 0 and l �= 0 cases as
follows.

3.1. Solution for the l = 0 Case

Let us start our study by rewriting the potential in Eq. (1) in a 1D form

Vq(x) = −V1
e−αx

1 + qe−αx
+ V2

e−2αx

(1 + qe−αx)2 , q ≥ 1, (14)

where some assignment of 1D parameter r − R = x, for which x ∈ (−∞,∞)
and α = 1/a are done. We proceed to calculate the energy eigenvalues and
their eigenfunctions by substituting the Hermitian real-valued potential given by
Eq. (14) into the 1D PT -symmetrical Hermitian SE with zero angular momentum
states,

ψ ′′
nq(x) + 2m

h2

[
En + V1e

−αx

1 + qe−αx
− V2e

−2αx

(1 + qe−αx)2

]
ψnq(x) = 0, (15)

and further employing the following convenient transformation, s(x) = (1 +
qe−αx)−1 to transform Eq. (15) into the form of hypergeometric type equation
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given in Eq. (5) as

d2ψnq(s)

ds2
+ 1 − 2s

s − s2

dψnq(s)

ds

+
2ma2

h
2 [−Ṽ2s

2 + (2Ṽ2 − Ṽ1)s + En + Ṽ1 − Ṽ2]

(s − s2)2
ψnq(s) = 0, (16)

where Ṽ1 = V1/q and Ṽ2 = V2/q
2. Furthermore, introducing the following di-

mensionless abbreviations:

ε2 = −2ma2En

h2 > 0 (En < 0), β2 = 2ma2Ṽ1

h2 (β2 > 0),

γ 2 = 2ma2Ṽ2

h2 (γ 2 > 0), (17)

finally gives the following simple hypergeometric type equation which is given by
Eq. (5):

ψ ′′
nq(s) + 1 − 2s

s − s2
ψ ′

nq (s) + [−γ 2s2 + (2γ 2 − β2)s + β2 − γ 2 − ε2]

(s − s2)2
ψnq(s) = 0,

(18)
where the wave functions ψn(s) in the last equation satisfies the following boundary
conditions:

ψnq(s) =
{

0, at s = 1 (r → ∞),

0, at s → 0 (r = 0) and R � a.
(19)

After comparing Eq. (18) with Eq. (5), we obtain the following associated poly-
nomials:

τ̃ (s) = 1 − 2s, σ (s) = s − s2,

σ̃ (s) = −γ 2s2 + (2γ 2 − β2)s + β2 − γ 2 − ε2. (20)

Substituting these polynomials into Eq. (10), with σ ′(s) = 1 − 2s, we achieve the
linear function

π (s) = ±
√

(γ 2 − k)s2 + (β2 − 2γ 2 + k)s + ε2 + γ 2 − β2. (21)

Further, the discriminant of the upper expression under the square root has to be
set equal to zero:

� = k2 + (4ε2 − 2β2)k + β4 − 4γ 2ε2 = 0, (22)

giving the double roots, i.e., k+,− = β2 − 2ε2 ± 2ςε, where ς =
√

ε2 + γ 2 − β2.

Afterwards, these two roots are substituted into Eq. (21) giving two possible
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functions for each k :

π (s) = ±
{

(ς − ε) s − ς ; for k+ = β2 − 2ε2 + 2ςε,

(ς + ε) s − ς ; for k− = β2 − 2ε2 − 2ςε.
(23)

Therefore, the polynomial τ (s) in Eq. (13) whose derivative has a negative value
is found by a suitable choice of the polynomial π (s) for k− = β2 − 2ε2 − 2ςε =
γ 2 − (ς + ε)2 from Eq. (23):

π (s) = − (ς + ε) s + ς, (24)

τ (s) = −2 (1 + ς + ε) s + (1 + 2ς ) , τ (́s) = −2 (1 + ς + ε)

= −1 −
√

1 + 4γ 2 + 2n, (25)

where the radial quantum number n is a non-negative integer describing the
quantization of the bound-states. Therefore, from Eqs. (11) and (12), we find a
new eigenvalue equations as

λ = γ 2 − (ς + ε) (ς + ε + 1) , (26)

and

λn = n(n + 1) + 2n (ς + ε) . (27)

Afterwards, setting λn = λ and then solving for ε, we find:

ε2
n(a, q) = 1

16
[((2n + 1) −

√
1 + 4γ 2)

+ 4( β2 − γ 2)((2n + 1) −
√

1 + 4γ 2)−1]2. (28)

Therefore, substituting the values of ε2, β2 and γ 2 into Eq. (28), we can im-
mediately obtain the exact energy spectrum for the PT -symmetric modified WS
potential given by (1) as

Enq = − h2

2ma2

⎡
⎣ 1

16

(
(2n + 1) −

√
1 + 8ma2V2

h2q2

)2

+ ma2

h2q2
(qV1 − V2)

+
(

2ma2

h2q2

)2

(qV1 − V2)2

(
(2n + 1) −

√
1 + 8ma2V2

h2q2

)−2⎤⎦ , V2 �= 0.

(29)

The last equation is found to be consistent with the analytical solutions of the
energy eigenvalues for the modified WS potential obtained by the SUSYQM
approach in Berkdemir et al. (2006b). Further, when the parameter q is taken to
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be one and the atomic units (au) (h = m = c = e = 1) are used, Eq. (29) can be
reduced into the following simple form:

En = −1

2

⎡
⎣(

(2n + 1) −
√

1 + 8a2V2

4a

)2

+ 4a2(V1 − V2)2((2n + 1) −
√

1 + 8a2V2)−2 + V1 − V2

⎤
⎦ . (30)

where V2 = V 2
1 . The above equation indicates that we deal with a family of

modified WS spherical potentials if appropriate changes in the parameters a and
V1 are done. In addition, if the parameter V2 in Eq. (15) is adjusted to zero for
s-state (i.e., the generalized WS model potential, cf. Berkdemir et al., 2006a),
the Schrödinger equation, in the present case, must be solved once again for its
energy eigenstates without regarding of the centrifugal barrier potential and the
deformation parameter q.3

Let us now find the corresponding wavefunctions. As stated in Eq. (6), in the
NU method, the wave function is constructed as a combination of two independent
parts. The function ynq(s) is the polynomial solution of the hypergeometric-type
equation which is given by Eq. (9) and described with the following weight
function:

ρnq(s) = s2ς (1 − s)2ε ; −2ς =
[

(2n + 1) −
√

1 + 8ma2V2

h2q2

]
+ 2ε. (31)

Substituting Eq. (30) into the Rodrigues relation given by Eq. (8), the polynomial
ynq(s) is calculated as

ynq(s) = Cnqs
−2ς (1 − s)−2ε dn

dsn
[sn+2ς (1 − s)n+2ε], (32)

where Cnq stands for the normalization constant. The functions ynq(s) are, up to
a numerical factor, in the form of Jacobi Polynomials which is one of the classical
orthogonal polynomials, i.e., ynq(s) 
 P

(2ς,2ε)
n (1 − 2s); which is valid physically

in the interval (0 ≤ r < ∞ → 0 ≤ s ≤ 1) (Sezgo, 1939). On the other hand, the
other part of the wave function can be found by substituting π (s) and σ (s) into
the expression φ′(s)/φ(s) = π (s)/σ (s) and then solving the resulting differential
equation to obtain

φnq(s) = sς (1 − s)ε . (33)

3 The exact bound s-states energy eigenvalues, in au, becomes En(a = 1, q → 1) = − 1
8 [n + 1 +

2V1
(n+1) ]2, which is consistent with previous works on SUSYQM (cf. formula (40) in Berkdemir,
Berkdemir, and Sever, (2006b)).
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Finally, combining the Jacobi polynomials and φnq(s) in Eq. (33), the s-wave
functions could be determined as

ψnq(s) = Nnqs
ς (1 − s)εP (2ς,2ε)

n (1 − 2s),

ε =
√

−2ma2En/h2, s = (1 + qe−x/a)−1, (34)

where Nnq is a new normalization constant. The last equation satisfies the require-
ments; ψn(s) = 0 at s = 1 (r → ∞) and ψn(s) = 0 at s = (1 + e−x/a)−1 ≈ 0
(r = 0), which is valid for realistic nuclei because the confinement barrier radius
R is much bigger than the surface diffuseness parameter, i.e., R � a. Therefore,
the wave function, ψnq(s) in Eq. (34) is valid physically in the closed interval
shown above, i.e., s ∈ [0, 1] or r ∈ [0,∞). In addition, the wave functions satisfy
the normalization condition∫ ∞

0
|ψnq(x)|2dx = 1 =

∫ 1

0
|ψnq(s)|2ds, (35)

where Nnq can be determined via

1 =
∫ 1

0
|ψnq(x)|2dx = N2

nq

∫ 1

0
s2ς (1 − s)2ε

[
P (2ς,2ε)

n (1 − 2s)
]2

ds. (36)

We now make use of the fact that the Jacobi polynomials, P
(ρ,ν)
n (ξ ), can be

explicitly written in two different ways (Magnus et al., 1966):

P (ρ,ν)
n (ξ ) = 2−n

n∑
p=0

(−1)n−p

(
n + ρ

p

)(
n + ν

n − p

)
(1 − ξ )n−p (1 + ξ )p , (37)

P (ρ,ν)
n (ξ ) = �(n + ρ + 1)

n!�(n + ρ + ν + 1)

n∑
r=0

(
n

r

)
�(n + ρ + ν + r + 1)

�(r + ρ + 1)

(
ξ − 1

2

)r

, (38)

where
(
n

r

) = n!
r!(n−r)! = �(n+1)

�(r+1)�(n−r+1) . Using Eqs. (37)–(38), we obtain the explicit

expressions for P
(2ς,2ε)
n (1 − 2s):

P (2ς,2ε)
n (1 − 2s) = (−1)n�(n + 2ς + 1)�(n + 2ε + 1)

×
n∑

p=0

(−1)pqn−p

p!(n − p)!�(p + 2ε + 1)�(n + 2ς − p + 1)
sn−p(1 − qs)p, (39)

P (2ς,2ε)
n (1 − 2s) = �(n + 2ς + 1)

�(n + 2ς + 2ε + 1)

n∑
r=0

(−1)rqr�(n + 2ς + 2ε + r + 1)

r!(n − r)!�(2ς + r + 1)
sr.

(40)



Exact Polynomial Solution of PT -/Non-PT -Symmetric 1653

Substituting Eqs. (39) and (40) into Eq. (36), one obtains

1 = N2
nq(−1)n

�(n + 2ε + 1)�(n + 2ς + 1)2

�(n + 2ς + 2ε + 1)

n∑
p,r=0

× (−1)p+rqn+r−p�(n + 2ς + 2ε + r + 1)

p!r!(n − p)!(n − r)!�(p + 2ε + 1)�(n + 2ς − p + 1)�(2ς + r + 1)
Inq(p, r),

(41)

where

Inq(p, r) =
∫ 1

0
sn+2ς+r−p(1 − qs)p+2εds. (42)

Using the following integral representation of the hypergeometric function
(Macrobert, 1962; Prudrinkov et al., 1986)

2F1(α0, β0 : γ0; q)
�(α0)�(γ0 − α0)

�(γ0)
=

∫ 1

0
sα0−1(1 − s)γ0−α0−1(1 − qs)−β0ds,

[Re(γ0) > Re(α0) > 0, |arg(1 − q)| < π ] (43)

which gives

2F1(α0, β0 : α0 + 1; q)/α0 =
∫ 1

0
sα0−1(1 − qs)−β0ds, (44)

where

2F1(α0, β0 : γ0; q) = �(γ0)�(γ0 − α0 − β0)

�(γ0 − α0)�(γ0 − β0)
,

(Re(γ0 − α0 − β0) > 0, Re(γ0) > Re(β0) > 0). (45)

For the present case, with the help of Eq. (45), when α0 = n + 2ς + r − p + 1,

β0 = −p − 2ε, and γ0 = α0 + 1 are substituted into Eq. (44), we obtain

Inq(p, r) = 2F1(α0, β0 : γ0; q)

α0
= (n + 2ς + r − p + 1)!(p + 2ε)!

(n + 2ς + r−p + 1)(n + 2ς + r + 2ε + 2)!
.

(46)

Now we shall study the case where V2 = 0, so we need to solve the 1D Schrödinger
equation for the generalized WS potential given by Eq. (14). For this, after applying
the previous transformation into Eq. (15), it gives

ψ ′′
nq(s) + 1 − 2s

s − s2
ψ ′

nq(s) + [− β2s + β2 − ε2]

(s − s2)2
ψnq(s) = 0, (47)
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for which.

τ̃ (s) = 1 − 2s, σ (s) = s − s2,

σ̃ (s) = − β2s + β2 − ε2, (48)

ε2 = −2ma2En

h2 > 0 (En < 0) , β2 = 2ma2V1

qh2 (β2 > 0).

Following a procedure analogous to the previous case we see that this time when
π (s) = −(c + ε)s + c is chosen for k− = −(c + ε)2, c =

√
ε2 − β2,

τ (z) = −2(1 + c + ε)s + (1 + 2c), (49)

could be obtained. Further, the eigenvalues are

λn = n2 + n + 2n(c + ε), λ = −(c + ε)(c + ε + 1), (50)

giving the exact energy spectrum of the generalized WS potential as

Enq = − h2

2ma2

[
(n + 1)

2
+ ma2V1

(n + 1)h2q

]2

, 0 ≤ n < ∞. (51)

which are consistent with the work in Berkdemir, Berkdemir, and Sever (2006b)
if one lets V2 = 0 in Eq. (14). As an illustrative example. We consider the
usual Hulthén potential (Ikhdair and Sever, 2005d), i.e., V (r) = −Ze2δ

exp(−δr)
1−exp(−δr) .

Therefore, for q = −1, V1 = Ze2δ, and a = 1/δ, Eq. (51) gives the following
exact s-wave bound-states spectra

En = −me4z2

2h2

[
1

n + 1
− (n + 1)

2
η

]2

, 0 ≤ n < ∞, η = h2δ

me2z
, (52)

which, consequently, yields the critical range parameter δc = 2
(n+1)2 and from

which the bound-states are subject to the condition n <
√

2/δ − 1. Hence, we
remark that the above result was found in recent works on Hulthén potential (cf.
(Aktaş and Sever, 2004; Filho and Ricotta, 1995; Ikhdair and Sever, 2005d)).

On the other hand, the radial wave function in the current case becomes

ψnq(s) = Dnqs
c(1 − s)εP (2c,2ε)

n (1 − 2s), (53)

with s = (1 + qe−x/a)−1 and Dnq is a new normalization constant.

3.2. Solution for the l �= 0 Case

We present the Hamiltonian for the modified WS potential for the l �= 0 case
as

H = p2

2m
− V1

e−( r−R
a )

1 + qe−( r−R
a )

+ l(l + 1)h2

2mr2
. (54)
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In order to evaluate the energy spectrum and their eigenfunctions, we introduce
the proposed modified WS potential of the form:

Veff (r; R) = −V1
e−( r−R

a )

1 + qe−( r−R
a )

+ l(l + 1)h2

2ma2

(
e−( r−R

a )

1 + qe−( r−R
a )

)2

, (55)

where the second term in Eq. (55) appears to be like the potential barrier term of
Eq. (54). Thus, comparing Eq. (55) with its counterpart Eq. (1), we can make the
convenient transformation replacement of V2 → h2l(l+1)

2ma2 which provides

Veff (r; R) = −V1
1

e( r−R
a ) + q

+ l(l + 1)h2

2ma2
(
e( r−R

a ) + q
)2 , (56)

where a = R/(q + 1). The expression for the lowest energy levels of the potential
in Eq. (55), after setting q = 1, in au becomes

En,� = − 1

2a2

[
1

4
((2n + 1) −

√
1 + 4�(� + 1))

+ (2a2V1 − �(� + 1))((2n + 1) −
√

1 + 4�(� + 1))−1

]2

. (57)

In this regard, for scattering processes, it has been well accepted that the surface
diffuseness parameter a is around 0.63 fm (Chamon et al., 1996; Christensen and
Winther, 1976; Hagino et al., 2001; Silva et al., 2001). Much larger diffuseness
parameter, ranging between 0.8 and 1.4 fm is needed in order to fit the data (Hagino
et al., 2001; Jaminon et al., 1986).

4. NON-HERMITIAN POTENTIAL FORMS

Under P , the spatial coordinates (x, y, z) are replaced by (−x,−y,−z) but
r is replaced by r and not −r, in the radial wave equation (4). Thus, the s-wave
differential equation is not PT -symmetric. The radial Schrödinger wave equation
becomes a different differential equation under the action of the PT -operator and
does not go into itself. This means that we must solve the problem in 1D, on the
full plane, say x-direction and not in the radial direction r.

4.1. PT -Symmetric and Non-Hermitian Modified WS Case

A potential is said to be a PT -symmetric when it satisfies the PT -symmetry
condition for a given 1D potential V (x) which is [V (−x)]∗ = V (x). Further the
Hamiltonian is said to be PT -symmetric when [PT ,H ] = 0.

We are, now, going to consider a different form of the modified WS potential,
at least one of the potential parameters is complex. If α = 1/a is pure complex
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(imaginary) parameter, i.e., α → iaI whereas V1, V2, and q are real, such a
potential is written as a complex function

V (x) = −V1

(
q + cos αIx − i sin αIx

1 + q2 + 2q cos αIx

)
+ V2

(
q + cos αIx − i sin αIx

1 + q2 + 2q cos αIx

)2

.

(58)
which possesses PT -symmetric but non-Hermitian. Hence, under joint action of
spatial and time reversal, we obtained [PT ,V (x)] = 0, i.e.,PT V (x) = V (x)PT ,
for the complex version of the potential function given by Eq. (14). By substituting
the above potential into Eq. (15) and repeating similar procedures in obtaining
Eq. (29), one can easily obtain the energy eigenvalues as

Enq = h2

2m

⎡
⎢⎣αI

(
(2n + 1) −

√
1 − 8mV2

h2q2α2
I

)
4

− 2m

q2h2αI

(qV1 − V2)

(
(2n + 1) −

√
1 − 8mV2

h2q2α2
I

)−1
⎤
⎦

2

, V2 �= 0. (59)

Therefore if 8mV2 < h2q2α2
I , then there exists bound states, otherwise there are

no bound states. We also have

λ = − 2mV2

q2α2
I h2 + (ς + ε) (ς + ε − i) , (60)

λn = n(n + 1) + 2inς. (61)

Here αI is an arbitrary real parameter and i = √−1. Thus, by choosing the
parameter α as purely imaginary, we find the energy eigenvalues obtained for PT -
symmetric and non-hermitian modified WS potential are not similar to Eq. (29).
A positive energy spectra is obtained if and only if

n <

√
2m

h2α2
I

(
V1

q
− V2

q2

)
− 1

2

(
1 −

√
1 − 8mV2

h2α2
I q

2

)
,

since the energy eigenvalues of modified WS potential are negative.4 It appears
that there exist bound-states at the eigenvalues are always positive real for V2 = 0,

that is,

En(αI , q) = h2

2m

[
1 + n

2
αI − mV1

(1 + n)h2αIq

]2

,

4 Once we set V2 = 0, then n <

√
2mV1

h
2
α2

I
q

− 1.
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otherwise there are no bound-states but can be complex for V2 >
h2α2

I q
2

8m
. Since

these 1D non-Hermitian Hamiltonians were invariant under PT -transformation,
they possessed real spectra. Thus, their real spectral properties were linked with
their PT -symmetry.

On the other hand, to avoid repeatition, we obtain an eigenfunction for the
non-Hermitian potential, Eq. (58), as:

ψnq(s) = Nnqs
iς (1 − s)iεP (2iς,2iε)

n (1 − 2s),

iς = −1

2

[
(2n + 1) −

√
1 − 8mV2/h2α2

I

]
− iε, iε =

√
2mEn/h2α2

I ,

s = (1 + qe−iαI x)−1. (62)

4.2. Non-PT -Symmetric and Non-Hermitian Modified WS Case

It is interesting to note that when the two parameters V1 and α are imaginary
at the same time, i.e., V1 → iV1I , and α → iαI , whereas V2 remains a pure real,
the potential in (14) transforms into the form

V (x) = −V1I

(
sin αIx + i(q + cos αIx)

1 + q2 + 2q cos αIx

)
+ V2

(
q + cos αIx − i sin αIx

1 + q2 + 2q cos αIx

)2

.

(63)
The Hamiltonian, in this case, is non-Hermitian and non-PT -symmetric having
real spectra. Making substitution of this potential into Eq. (15) and repeating
similar procedures in obtaining Eq. (29), one can easily get the energy eigenvalues
as

Enq = h2

2m

⎡
⎢⎢⎣

αI

(
(2n + 1) −

√
1 − 8mV2

h
2
q2α2

I

)
4

− 2m

h2q2αI

(iqV1I − V2)

(
(2n + 1) −

√
1 − 8mV2

h2q2α2
I

)−1
⎤
⎦

2

, V2 �= 0

(64)

and

λ = − 2mV2

q2α2
I h2 + (b + ε) (b + ε − i) , (65)

λn = n(n + 1) + 2in (b + ε) , (66)
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where b =
√

ε2 + γ 2 − iβ2. The last case has real plus imaginary energy spectra.
When we consider the real part of energy eigenvalues an acceptable result is
obtained when

n <

√
2m

h2α2
I

(
iV1I

q
− V2

q2

)
− 1

2

(
1 −

√
1 − 8mV2

h2α2
I q

2

)

condition. However, the energy spectrum is not seen at the imaginary part of
energy eigenvalues, since it is independent of n.5

On the other hand, to avoid repeatition, we obtain an eigenfunction for the
non-Hermitian potential as:

ψnq(s) = Nnqs
ib(1 − s)iεP (2ib,2iε)

n (1 − 2s),

ib = −1

2

[
(2n + 1) −

√
1 − 8mV2/h2α2

I

]
− iε, iε =

√
2ma2En/h2,

s = (
1 + qe−iαI (r−R)

)−1
. (67)

5. RESULTS

As a first attempt, we compute here the binding energy spectrum from Eq. (30)
for the proposed modified WS potential. All we need simply is to obtain an
optimized set of parameters for V1 and a matching each confinement radius value
R which describe well the physical system in question. Consequently, we choose
the sets of parameters already been fitted for the usual WS potential by utilizing
the optimization procedures (Costa et al., 1999).

Therefore, for V2 = 0, by means of Eq. (51) (cf. Berkdemir et al., 2006a),
we calculate the ns-states binding energy spectrum in units of MeV for five
confinement radius values (i.e., R = 0.5, 1.0, 2.0, 3.0, 4.0) in Table I. Further,
we produce the bound energy eigenvalues of the lowest 1p- and 1d-states for the
above five confinement radius values in Table II by means of Eq. (57). As we have
used throughout the au, our energy numerical calculations are made in units of
2RY = 27.212 eV (Taylor, 1984) and so that distances are measured in the Bohr
radius a0.

On the other hand, it is illustrated in Fig. 1, the general form of the generalized
WS potential, V2 = 0 or s-states, for various values of the deformation parameter
q = 1, 3 and 7. This is made by utilizing the set of fitting parameters of R = 3
case already found by Costa et al. (1999) (cf. Table I). Moreover, the same set of
parameters together with V2 = V 2

1 (p-states) are used in drawing the general form
of the modified WS potential in Fig. 2. The s-states energy shapes, in au, of the

5 Once we set V2 = 0, then n <

√
i2mV1I

h
2
α2

I
q

− 1 which agrees with Berkdemir, Berkdemir, and Sever,
(2005, 2006).
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Table I. Calculated energy eigenvalues of the usual WS potential for
the s-states in MeV

State (n) R 1/a V1 En

0 0.5 125.4 4057.7 −122.94
0 1.0 23.1 247.3 −6.74
0 2.0 5.8 82.1 −3.96
0 3.0 3.5 123.8 −18.75
0 4.0 2.8 318.4 −180.3
1 0.5 −272.73
1 1.0 −11.02
1 2.0 −2.26
1 3.0 −6.11
1 4.0 −48.42
2 0.5 −538.19
2 1.0 −19.87
2 2.0 −2.45
2 3.0 −3.95
2 4.0 −24.12
3 0.5 −911.93
3 1.0 −32.50
3 2.0 −3.12
3 3.0 −3.42
3 4.0 −15.75
4 0.5 −1393.01
4 1.0 −48.80
4 2.0 −4.09
4 3.0 −3.41
4 4.0 −12.04

Table II. Calculated bound energy eigenvalues for lowest 1p-and 1d-states
in MeV

State (n) � R 1/a V1 En,�

0 1 0.5 125.4 4057.7 −12.53
0 1 1.0 23.1 247.3 −0.01
0 1 2.0 5.8 82.1 −1.72
0 1 3.0 3.5 123.8 −15.38
0 1 4.0 2.8 318.4 −163.18
0 2 0.5 125.4 4057.7 −29.45
0 2 1.0 23.1 247.3 −0.52
0 2 2.0 5.8 82.1 −0.24
0 2 3.0 3.5 123.8 −3.46
0 2 4.0 2.8 318.4 −41.85
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Fig. 1. General form of the generalized WS potential, i.e., V2 = 0, for the s-states. The curves are
drawn by using the appropriate optimized set of parameters for R = 3.0 au.

usual WS potential are drawn in Fig. 3 as function of the discrete level n using the
three sets of parameters R = 1.0, 2.0, 3.0. Moreover, Figure 4 shows the lowest
p-state (n = 0) energy shapes, in au, for the modified WS potential using the same
sets of parameters in Fig. 1 together with V2 = V 2

1 for the sake of simplicity.
We emphasize here that Fig. 3 (Fig. 4) have no lower bounds on the spectrum

for V2 = 0 (V2 = V 2
1 ) cases, respectively. In this regard, it is found that the energy

levels go into lower bound for 0 < n < 6 (0 < n < 10) states and into higher
bound for n > 6 (n > 10) states with an arbitrary choice of the physical parameter
R = 3.0 (R = 4.0), respectively.

Finally, for V2 �= 0 case, the energy levels go into lower bound for 0 < n < 4
states and higher bound for n > 4 states in R = 3.0 case. However, using the other
sets of parameters R = 1.0 and R = 2.0, it goes into higher bound for n > 1.

Obviously, the modified WS potential stimulates different confinement bar-
riers R ≥ 2, very well and can be used in the analysis of the energy spectra of
confined systems.
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Fig. 2. General form of the modified WS potential for the lowest p-state. The curves are shown for
R = 3.0 au with V2 = V 2

1 .

6. SUMMARY

In this work we have utilized NU method and solved the radial SE for the
modified WS model potential with the angular momentum l = 0 (V2 = 0) and
l �= 0 (V2 �= 0). A particularly interesting result of our investigation is that all
the PT -symmetric Hamiltonians with potential parameters remain all purely real
have a real bound energies En with n ≥ 0 for Hermitian case and real positive
in contrary to expectation if one lets α → iαI in the modified WS potential.
Therefore, for non-Hermitian case, the spectrum is real for V2 = 0 but complex
conjugate for some values of V2 �= 0 in the modified WS potential. Further, when α

and V1 parameters are purely complex, it is seen that the number of discrete levels
for bound states is given only by the real part of energy eigenvalues. Thus, for a
PT -symmetric Hamiltonians the exactness of PT -symmetry implies the reality
of spectrum. More specifically, if an eigenfunction ψnq(s) is a PT -invariant, PT
ψnq(s) = ψnq(s), then the corresponding eigenvalue of En,l is real. The exact PT -
symmetry is a sufficient condition. But for a given PT -symmetric Hamiltonian, it
is not easy to determine the exactness of PT -symmetry without actually solving
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Fig. 3. Shape of the s-states energy eigenvalues for the usual WS potential, i.e., q = 1, with respect
to the quantum number n for R = 1.0, 2.0 and 3.0 au.

the corresponding radial SE. In this regard, the wave functions are physical and
energy eigenvalues are in good agreement with the results obtained by the other
methods (Berkdemir et al., 2006b).

On the other hand, the effect of the centrifugal barrier potential which goes
as 1/r2 was replaced by a term having exactly the generalized WS form but of
a second degree in order to reproduce its effect. This l �= 0 term has its physical
basis arising from the superpotential partner of the generalized WS potential in
SUSYQM (Berkdemir et al., 2006b). Hence, this new barrier term retakes the exact
form of the original potential (Berkdemir et al., 2006a) but with a small perturbed
strength factor; say V2 (Berkdemir and Han, 2005; Berkdemir et al., 2006b,c).
According to the complex quantum mechanics (Bender, Brody, and Jones, 2002),
the eigenvalues of the conversion α → iαI are not simultanously eigenstates of
PT -operator.

Finally, we point out that the exact results obtained for the proposed modified
WS potential may have some interesting applications in the study of different
quantum mechanical systems of nuclear physics such as in nuclear scattering.
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Yeşiltaş, Ö., Şimşek, M., Sever, R., and Tezcan, C. (2003). Physica Scripta 67, 472.
Znojil, M. and Tater, M. (2001). Journal of Physics A 34, 1793.
Znojil, M. (1999). Physics Letters A 264, 108.
Znojil, M. (2000). Journal of Physics A 33, 4203.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


